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A convenient evaluation method is proposed for the debonding adhesive strength in terms of the 
intensity of singular stress field (ISSF) appearing at the end of interface. The same FEM mesh 
pattern is applied to unknown problems and reference problems. It is found that the ISSF is obtained 
accurately by focusing on the FEM stress at the adhesive corner. Then, the debonding condition can 
be expressed as a constant value of critical ISSF. The usefulness of the present solution is verified by 
comparing with the results of the conventional method. 
Keywords: Intensity of singular stress field; Strength evaluation; Fracture mechanics; Adhesively 
bonded joints. 

Nomenclature 

Symbols 
E                     Young’s modulus 
Fσ                   Dimensionless ISSF 

G                      Shear modulus 
h                      Adhesive thickness 

,K Kσ τ              ISSF 

cKσ                    Critical ISSF 

1l                        Adherend length of single lap joint 

adl                      Adhesive length of single lap joint 

afP                     Experimental fracture load 

1t                        Adherend thickness of single lap joint 

adt                      Adhesive thickness of single lap joint 

r                        Radial distance away from the singular point 

W                      Width of the bonded strip 

( ) ( ), , ,k r kf fθθ θθ λ θ λ    Non-dimensional functions of angle θ  and kλ  

α , β                 Dundurs’ material composite parameters  
θ                        Angle from the interface corner 
λ                        Singular index 

,y xyσ τ                 Tension and shear stress component near the crack tip 

oσ                       Tension at both ends of single lap joint 

cσ                       Adhesive tensile strength  
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cτ                        Average shear stress at fracture 
* *,FEM FEM

y xyσ τ        FEM stresses at the interface corner of the reference problem 

,FEM FEM
y xyσ τ          FEM stresses at the interface corner of the given unknown problem 

 ν                        Poisson’s ratio 
Abbreviations 
FEM                    Finite element method 
ISSF                    Intensity of singular stress field  
RWCIM              Reciprocal work contour integral method 

1. Introduction 

Due to their low cost and high performance, adhesive joints are widely used in a variety 
of industries [Cheng et al. (2015); Barnes and Pashby (2000)]. For example, IC/LSI 
packages contain various interfaces for the connection of the semiconductor to the 
substrate, resin seal of semiconductor and multilayer structure. Therefore, in order to 
ensure the reliability of the packages of semiconductors, the proper method is required 
for evaluating the debonding strength [Shibutani (2004); Hattori et al. (1988); Shiratori 
(1994); Takahashi et al. (2016); Hirata et al. (2006)]. Generally, the debonding strength 
of the dissimilar joints depends on the material combination, load condition, adhesive 
condition and so on. Since the experimental evaluation is time-consuming, the practical 
and convenient analysis with a debonding fracture criterion is desirable. Several adhesive 
strength evaluations have been  done analytically [Khan et al. (2017); Pathak et al. 
(2017); Gautam and Sauer (2014)].   

The increasing use of adhesive joints has generated a lot of interest in understanding 
the stress and crack initiation in the adhesive. Since the singular stress field usually exists 
at the interface end [Bogy (1968); Bogy (1971); Yuuki (1993); Treifi and Oyadiji (2013)], 
the interfacial debonding often occors under thermal and mechanical loading [Hattori et 
al. (1988)]. In the previous studies [Mintzas and Nowell (2012); Qian and Akisanya 
(1998); Reedy (1993)], the adhesive strength was predicted in terms of the intensity of 
the singular stress field (ISSF) used as the debonding criterion. Recently, the authors 
have proposed a mesh independent technique to calculate ISSFs [Zhang et al. (2010); 
Zhang et al. (2015). Then, the authors have shown that the adhesive strength can be 
expressed as a constant value of critical ISSF ( cKσ =const.) for both brittle and ductile 
adhesive butt joints as shown in Fig. 1 [Noda et al. (2015)].  

The single-lap shear testing [BS EN 1465 (1995); ASTM D 1002-1 (2003)] is a 
general testing method widely used. In this study, therefore, the debonding condition of 
the single lap joint specimens in Fig.2 [Park et al. (2010)] will be discussed by focusing 
on ISSF. In Section 2, the mesh-independent technique proposed previously will be 
outlined by taking an example of 2D butt joint. In Section 3, a convenient evaluation 
method will be proposed for the single lap joint by focusing on the ISSF. In Section 4, the 
ISSF for the SLJ [Park et al. (2010)] will be analyzed by changing the adherend and 
adhesive geometries. Finally, in Section 5, a convenient method will be proposed to 
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evaluate the adhesive strength since the previous debonding fracture criteria were not 
very simple and convenient [Nono and Nagahiro (1986); Kyogoku et al. (1986); 
Rodríguez et al. (2012)]. 

 

 

 

 

(a) Brittle adhesive 

 
(b) Ductile adhesive  

Fig.1 Adhesive strength expressed as cKσ =const. for butt joint. 

 

 

  
(a) (b) 
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Fig. 2. Specimen configurations. 

2. Outline of the analysis method proposed for butt joints 

The most popular ISSF is known as the stress intensity factor for cracks. To obtain 
more general ISSF for evaluating interface strength, several analytical techniques were 
applied [Shibutani (2004); Hattori et al. (1988); Shiratori (1994); Kitamura et al. (2002); 
Shibutani et al. (2003); Takahashi et al. (2016); Hirata et al. (2006); Noda and Takase 
(2003)]. One of the most used numerical modelling technique is Finite Element Method, 
which can be used for many engineering applications conveniently [Noda et al. (2015a; 
2015c; 2016; 2017); Wang et al. (2016); Miyazaki et al. (2017)]. Here, the brief outline 
of the mesh-independent technique coupled with FEM will be explained since the 
details were indicated for the butt joint [Noda et al. (2015b); Zhang et al. (2010); Zhang 
et al. (2015)]. By assuming homogeneous adhesive layer, it is known that the interface 
stress yσ  has singularity in the form 11/y r λσ −∝ when ( 2 ) 0α α β− >  as shown in 
Fig.3. Here, ,α β  denote Dundurs’ parameters [Dundurs (1969)] defined in Eq. (1) 
and the singular index λ  can be determined from Eq. (2) [Bogy, (1968; 1971)] with the 
special angles for both adhesive 90° and adherend 90° as shown in Fig.1.     

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )
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  (2) 

When ( 2 ) 0α α β− > , the eigenequation (2) has only one real root in the range
0 Re( ) 1λ≤ ≤ . Then, the singular interface stress yσ can be expressed as follows. 

                                                          1y
K
r

σ
λσ −=                                                                  (3) 

Table 1 shows the FEM stress FEM
yσ  and the FEM stress ratio FEM FEM*

y y/σ σ , where 
FEM
yσ  is the FEM stress of the bounded strip with h/W=0.001 in Fig.3(c), is the FEM 

stress of the bounded strip with / 1h W ≥  in Fig.3(d). It should be noted that the FEM 
stress FEM

yσ  is different from the real stress  real
yσ due to the finiteness of the mesh 

division. Here, it should be noted that the results of bonded plate for / 1h W ≥  are 
available as the exact reference solution obtained by the body force method as shown in 
Appendix A [Noda et al. (2007)]. The ratio FEM FEM*

y y/σ σ  is independent of the mesh 
size, and therefore, as shown in Eq. (4), the ratio of ISSF *K / Kσ σ  is determined from 
the FEM stress ratio

0
lim[ ( ) ( )]FEM FEM*

y yr
r / rσ σ

→
 although the real stress  real

yσ  is not 
available. Here, an asterisk (∗) means the values of the reference problem. The same 
FEM mesh pattern is applied to unknown problems and reference problems. 
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To obtain the ISSF from the FEM stress ratio, a reference solution in Fig.3 (b) is used 
because the exact ISSF has been investigated as shown in Appendix A. This method 
shown above is very convenient to analyze the ISSF by focusing on the FEM stress

FEM
yσ ( 0)r → . 

 

 
 

 
 

(a) (b) (c) (d) 

Fig. 3. Real stress real
yσ for (a) butt joint, (b) bonded strip ( / 1h W ≥ ) vs. FEM stress FEM

yσ for (c) butt joint, (d) 
bonded strip ( / 1h W ≥ ) 

 

Table 1. FEM stress distributions ��
���|ℎ �=0.001⁄  stress distribution ratio ��

���|ℎ �=0.001⁄ /��
���|ℎ �≥1⁄ for 

bonded strip under tension shown in Fig. 3 obtained by different mesh size. 

Smallest mesh size mine = 1/38 around the edge Smallest mesh size mine = 1/34 around the edge 
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2/656100 1.138 0.525 2/81000 
 

0.859 0.522 

3/656100 1.109 0.525 3/81000 
 

0.838 0.522 

4/656100 1.088 0.525 4/81000 
 

0.824 0.523 

5/656100 1.071 0.525 5/81000 
 

0.813 0.525 

The ISSF for butt joints can be obtained conveniently because there is only one real 
root in Eq. (2) and the exact reference solution *Kσ  is available for bonded plate [Noda 
et al.(2007)]. Then, the adhesive strength can be expressed as a constant value of 
critical ISSF ( cKσ =const.) for both brittle and ductile adhesive butt joints as shown in 
Fig. 1 [Noda et al. (2015b)]. Although the Suzuki’s specimen were  carefully prepared 
for carbon steel/epoxy resin [Suzuki (1987)] to exclude the defect and residual strain, 
other experimental results also can be expressed as a constant value of critical ISSF 
( cKσ =const.). for carbon steel/epoxy resin, aluminum/araldite, and brass/solder [Noda  
et al.(2015b)]. Those results suggested that the present method may be useful for 
evaluating other toughened structural adhesives exhibiting a good degree of ductility 
[Noda et al. (2015c); Wang et al. (2016); Miyazaki et al. (2017)]. In other words, if 
interface failure is confirmed instead of cohesive failure (see Fig.13), the linear elastic 
approach presented in this paper may predict the failure of a relatively ductile adhesive. 

 

 

Fig. 4. Analysis model and boundary condition. 

3. Analysis method for lap joints focusing on the distinct singular stress field 

Lap joints have distinct singular stress fields at the interface end [Bogy (1971); Yuuki 
(1993)]. In this Section, the single lap joint in Fig.4 will be considered as an example of 
lap joints. The value of the singular index λ  can be determined from the eigenequation 
(5), which was derived by Bogy (1968; 1971) with the special angles for adhesive 90° 
and adherend 180° as shown in Fig.2.    

( ) ( ) ( )

( ) ( ) ( )

2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2

4sin sin 4 sin sin 4 sin
2 2

1 32 cos 2 sin cos sin sin 0
2 2 2

πλ πλπλ λ β λ πλ αβ λ α λ πλ β

πλ πλ πλ πλ πλ α λ λ

      − + + − −      
      

    − + + + − =    
    

 (5) 

Here, ,α β  are Dundurs’ parameters [Dundurs (1969)] expressed from Possion’s ratio 
ν  and shear modulus G ( j =1 is for adhesive, j =2 is for adherend).  
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   (6) 

Note that the eigenequation for lap joint has two real roots for most of material 
combination as shown in Appendix B. 

The single lap joint testing for adhesive strength is standardized by Japanese 
Industrial Standards (JIS K6850) [JIS K6850 (1999)]. This standard prescribes the 
specimens with a small thickness 1.6 0.1± mm. Since large bending deformations 
usually appear before debonding for thin specimens (see Fig.C.1), the thick specimens 
used by Park [Park et al. (2010)] in Fig.2 will be analyzed in this study, where the 
adherends aluminum alloy 6061-T6 are bonded with adhesive FM73M epoxy. The 
details of the specimens are indicated in Appendix C. Table 2 shows the elastic 
parameters of the adherend and adhesive. The eigenequation has two different real 
values, that is, 1λ =0.6062 and 2λ =0.9989. Then, the stresses yσ and xyτ can be 
expressed as follows. 

                                        1 2

1 2

, ,
1 1y

K K
r r

σ λ σ λ
λ λσ − −= + , 1 2

1 2

, ,
1 1x y

K K
r r

τ λ τ λ
λ λτ − −= + .                                  (7) 

Table 2. Material properties of adhesive and adherent. 

Material 
Young’s modulus 

E [GPa] 
Poisson’s 
ratio ν  α  β  1λ  2λ  

Adherent 6061-T6 68.9 0.30 
-0.8699 -0.06642 0.6062 0.9989 

Adhesive Epoxy resin 4.20 0.45 

As shown in Eq. (7), the singular stress field of lap joint is complex and therefore the 
analysis is more difficult than the analysis of the butt joint. Since the method in Section 
2 cannot be applied to the lap joint analysis directly, the singular stress field for the lap 
joint will be investigated.  

Fig.4 shows the analysis model where 1l  and 1t  are the adherend length and adherend 
thickness, adl  and adt  are the adhesive length and adhesive thickness, L  is the fixed 
boundary length of adherend, and oσ  is the tension at both ends of single lap joint. In 
addition, ( 1E , 1ν ) and ( 2E , 2ν ) are Young’s modulus and Poisson’s ratio of the 
adherend and adhesive, respectively. The total length of the specimen in Fig. 4 is fixed 
as 225mm with varying the adhesive thickness adt =0.15~ 0.9mm and the adhesive length 

adl  =10~ 50mm. Table 3 shows the dimensions of the specimens considered in this study. 

Table 3. Dimensions of the adhesive joint specimens. 

Specimen adl  [mm] adt  [mm] 

A10 10 0.15 
A15 15 0.15 
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A20 20 0.15 
A25 25 0.15 
A30 30 0.15 
A35 35 0.15 
A40 40 0.15 
A50 50 0.15 

A25-30 25 0.30 
A25-45 25 0.45 
A25-90 25 0.90 
A30-30 30 0.30 
A30-45 30 0.45 
A30-90 30 0.90 

Fig.5 shows the schematic illustration of the mesh pattern in the vicinity of the 
interface corner of the lap joint. The linear elastic analyses are performed under the 
plane strain condition by using the software MSC Marc. In this analysis, the elements 
near the edge corners of all models are set so as to be the same size and shape around 
the corner independent of the adhesive dimensions. Then, the minimum size of the 
element around the corner mine  is changed, the effect of the mesh pattern on the stress 
distribution is investigated. The value of mine  is set to 3-8, 3-9, 3-10 and 3-11mm. 

 
Fig. 5. Mesh pattern near the interface edge. 

Table 4 shows the singular stress distributions obtained by FEM stress ,FEMyσ , 
,FEMxyτ for the specimens A25, A50, A25-90 under the applied stress 0 1σ = MPa in 

Fig.4. Based on the fixed boundary length prescribed in JIS K6850 [JIS K6850 (1999)], 
L  =50mm is fixed in this study. It is found that the stress ratios become almost constant 
independent of the minimum element size mine . Fig. 6 shows the normalized stress 
distribution A50 A25

,FEM ,FEMy yσ σ , A50 A25
,FEM ,FEMxy xyτ τ  under the applied stress 0σ =1MPa in Fig.4. 

Fig. 7 shows the normalized stress distributions A25 90 A25
,FEM ,FEMy yσ σ− , A25-90 A25

,FEM ,FEMx y x yτ τ  under 
the applied stress 0σ =1MPa. From Fig.6, in the range of 10-3>r>10-4mm, the stress 
ratios A50 A25

,FEM ,FEMy yσ σ  and A50 A25
,FEM ,FEMxy xyτ τ are almost constant independent of r. However, 

from Fig.7, with decreasing r, A25 90 A25
,FEM ,FEMy yσ σ−  and A25-90 A25

,FEM ,FEMx y x yτ τ decreases rapidly. 
The stress distributions of the specimen A25-90 are different from those of the 
specimen A50 in this range. That is because the bending moment which is applied to the 
adhesive layer changes depending on the adhesive thickness. However, when the 

410r −<  mm, A25-90 A25
0,FEM 0,FEMy yσ σ and A25 90 A25

,FEM ,FEMx y x yτ τ−  become almost constant. 
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Table 4. Stress distributions on the interface of specimens A25, A50 and A25-90 when 0 1σ = MPa. 

(a) emin = 3-8 mm 

r  
[mm] 

A25 A50 A25-90 
A50
,FEM

A25
,FEM

y

y

σ
σ

 
A50

,FEM
A25

,FEM

xy

xy

τ
τ

 
A25 90
,FEM
A25
,FEM

y

y

σ
σ

−

 
A25 90

,FEM
A25

,FEM

xy

xy

τ
τ

−

 A25
,FEMyσ

[MPa] 

A25
,FEMyτ  

[MPa] 

A50
,FEMyσ  

[MPa] 

A50
,FEMyτ  

[MPa] 

A25 90
,FEMyσ −  

[MPa] 

A25 90
,FEMyτ −  

[MPa] 

0/38 108.089 -34.3491 82.2182 -26.1290 108.513 -34.4831 0.760653 0.760690 1.00392 1.00390 

1/38 60.9108 -17.5542 46.3257 -13.3538 61.1477 -17.6315 0.760550 0.760718 1.00389 1.00440 

2/38 45.8040 -14.9598 34.8342 -11.3807 45.9878 -15.0364 0.760506 0.760752 1.00401 1.00512 

3/38 36.3691 -13.4622 27.6575 -10.2414 36.5270 -13.5417 0.760467 0.760752 1.00434 1.00591 

4/38 31.0483 -12.2658 23.6104 -9.33110 31.1985 -12.3473 0.760441 0.760741 1.00484 1.00664 

5/38 27.6319 -11.3873 21.0119 -8.66264 27.7833 -11.4705 0.760422 0.760728 1.00548 1.00731 

6/38 25.2208 -10.6877 19.1718 -8.13018 25.3777 -10.7719 0.760158 0.760704 1.00622 1.00788 

 
(b) emin = 3-11 mm 

 

r  
[mm] 

A25 A50 A25-90 
A50
,FEM

A25
,FEM

y

y

σ
σ

 A50
,FEM

A25
,FEM

xy

xy

τ
τ

 A25 90
,FEM
A25
,FEM

y

y

σ
σ

−  A25 90
,FEM

A25
,FEM

xy

xy

τ
τ

−  
A25
,FEMyσ

[MPa] 

A25
,FEMyτ  

[MPa] 

A50
,FEMyσ

[MPa] 

A50
,FEMyτ  

[MPa] 

A25 90
,FEMyσ −

[MPa] 

A25 90
,FEMyτ −  

[MPa] 

0/311 396.766 -125.975 301.826 -95.8324 398.250 -126.441 0.760715 0.760726 1.00374 1.00370 

1/311 224.377 -64.3886 170.680 -48.9821 225.258 -64.6264 0.760684 0.760726 1.00393 1.00369 

2/311 169.059 -54.8550 128.597 -41.7302 169.735 -55.0544 0.760663 0.760736 1.00400 1.00364 

3/311 134.534 -49.3942 102.333 -37.5760 135.084 -49.5722 0.760648 0.760737 1.00409 1.00360 

4/311 115.084 -45.0352 87.5367 -34.2601 115.560 -45.1967 0.760633 0.760740 1.00414 1.00359 

5/311 102.616 -41.8377 78.0522 -31.8277 103.046 -41.9899 0.760624 0.760742 1.00419 1.00364 

6/311 93.8343 -39.2910 71.3715 -29.8904 94.2297 -39.4337 0.760612 0.760744 1.00421 1.00363 
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Fig. 6. Normalized stress distributions A50 A25
,FEM ,FEM/y yσ σ , A50 A25

,FEM ,FEM/xy xyτ τ  under 0 1σ = MPa. 

 

 
 

Fig. 7. Normalized stress distributions A25 90 A25
,FEM ,FEM/y yσ σ− , A25 90 A25

,FEM ,FEM/xy xyτ τ−  under 0 1σ = MPa. 

From the results of Table 4 and Figs. 6, 7, it is found that the stress ratios at the edge 
corner become almost constant independent of mine , adt  and adl . Therefore, the following 
relations can be conjectured at the interface end. 

                                     1 2

11 2 1 2

, ,
,1 1 1 1

1
y

K K C
K

r r r r
σ λ σ λ σ

σ λλ λ λ λσ − − − −

 = + ≅ + 
 

,                                  (8) 

                                      1 2

11 2 1 2

, ,
,1 1 1 1

1
x y

K K C
K

r r r r
τ λ τ λ τ

τ λλ λ λ λτ − − − −

 = + ≅ + 
 

                                  (9) 

Since the normalized stress is independent of the mesh size and the geometry of the 
adhesive joint, constant values Cσ  and Cτ  in Eqs. (8), (9) can be assumed. The validity 
of this assumption will be confirmed in the next Section.  

The reference ISSF is denoted by 
1

*
,Kσ λ

 and the unknown ISSF is denoted by
1,Kσ λ . 

Then, the FEM stresses obtained at the corner point are denoted by *
0,FEMyσ  for the 

reference solution and by 0,FEMyσ  for unknown problem. From Eq.(8), the relation 
between 

1 1

*
, ,K Kσ λ σ λ

 and *
0,FEM 0,FEMy yσ σ can be expressed as follows.  

                                                            1

1

, 0, FEM
* *

, 0, FEM

y

y

K
K

σ λ

σ λ

σ
σ

=                                                   (10) 

If the reference ISSF 
1

*
,Kσ λ

 is available, the unknown ISSF
1,Kσ λ  can be obtained from 

the FEM normal stress ratio *
0,FEM 0,FEMy yσ σ  by applying the same mesh pattern to the 

unknown and reference problems. Similarly, the unknown ISSF
1,Kτ λ can be obtained 

from the FEM shear stress ratio *
0,FEM 0,FEMxy xyτ τ by using Eq. (11). 

                                                             1

1

, 0, FEM
* *
, 0, FEM

xy

xy

K
K

τ λ

τ λ

τ
τ

=                                                   (11) 
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As shown in Fig. 6, it is found that the difference between A50 A25
0,FEM 0,FEMy yσ σ  and 

A50 A25
0,FEM 0,FEMxy xyτ τ  tends to become smaller with decreasing r. Then, from Fig. 7, the 

difference between A25-90 A25
0,FEM 0,FEMy yσ σ  and A25-90 A25

0,FEM 0,FEMxy xyτ τ  tends to become smaller with 
decreasing r. From Table 4, the relations of A50 A25 A50 A25

0,FEM 0,FEM 0,FEM 0,FEMy y xy xyσ σ τ τ=  and 
A25-90 A25 A25-90 A25
0,FEM 0,FEM 0, 0,y y x y FEM x y FEMσ σ τ τ=  can be confirmed. This means we have the 

equation * *
0,FEM 0,FEM 0,FEM 0,FEMy y xy xyσ σ τ τ= , and therefore, we have the equation (12). 

                                                          1 1

1 1

, ,
* *

, ,

K K
K K

σ λ τ λ

σ λ τ λ

=                                                   (12) 

From Eqs. (10)~ (12), it is seen that similar equations can be obtained for 
2,Kσ λ  and 

2,Kτ λ . This is because Cσ  and Cτ  are constant. Since the weaker singular index is close 
to no singularity as 2λ =0.9989 ≈1, the stronger singular stress field with 1λ  is enough 
to be considered. Table 5 shows the singular indexes 1λ , 2λ of some other material 
combinations in [Zhang et al. (2015)] including stainless steel SUS304, aluminum alloy 
A7075, silicon and IC substrate FR-4.5 as the adherends with resin as the adhesive. It is 
found that the weaker singular indexes 2λ  is in the small range of 0.9914~0.9999. 

Table 5. Singular indexes for single lap joint with different material combinations. 

 Material 
Young’s modulus 

E [GPa] 
Poisson’s 
ratio ν  1λ  2λ  

Adherent 

SUS304(stainless steel) 206 0.3 0.6568 0.9999 

A7075(aluminum alloys) 71 0.33 0.6489 0.9995 

Silicon 166 0.26 0.6552 0.9999 

FR-4.5(IC substrate) 15.34 0.15 0.6020 0.9914 

Adhesive Resin 2.74 0.38   

4. Discussion for evaluating the singular stress field of lap joint 

In Section 3, a convenient evaluation method was presented to obtain the ISSF of single 
lap joint. It was found that the singular stress field is expressed in a similar way almost 
independent of the geometry of the adhesive joint. However, only the normalized singular 
stress field can be discussed by using this method from Eqs. (10~12). The ISSF cannot be 
obtained since there is no exact reference solution for the lap joint. In this Section, 
therefore, the reference solution will be obtained by using the reciprocal work contour 
integral method (RWCIM) [Carpenter and Byers (1987)], and the usefulness of the 
proposed method in Section 3 will be verified by comparing the results of RWCIM. The 
detail of RWCIM is indicated in Appendix D. 

Around interface corner O in Fig.4, the stresses θσ  and rθτ  in the r direction can be 
expressed as follows. The notation r  denotes the radial distance away from the corner 
singular point O. 
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                                          ( ) ( )
1 2

1 2
1 21 1, ,

K Kf f
r rθ θθ θθλ λσ θ λ θ λ− −= + , 

                                         ( ) ( )
1 2

1 2
1 21 1, ,r r r

K Kf f
r rθ θ θλ λτ θ λ θ λ− −= + .                                       (13) 

Here, kK ( 1, 2k = ) has real values, the ( ), kfθθ θ λ  and ( ),r kf θ θ λ  are non-
dimensional functions of angle θ  and kλ . Three boundaries exist in a bi-material open 
wedge such as the one shown in Fig.4, two traction free edges (at angles / 2θ π= −  and 
θ π= ) and an interface ( 0θ = ). By focusing on the interface stress, the intensity of 
singular stress fields ISSFs are controlled by the following four parameters. 

                                   ( )
11 1 ,0

,K f Kθθ σ λθ
θ λ

=
= , ( )

22 2 ,0
,K f Kθθ σ λθ

θ λ
=

= , 

                                    ( )
11 1 ,0

,rK f Kθ τ λθ
θ λ

=
= , ( )

22 2 ,0
, =rK f Kθ τ λθ

θ λ
=

.                       (14) 

As shown in Eq.(14), since the four parameters 
1,Kσ λ , 

2,Kσ λ , 
1,Kτ λ , 

2,Kτ λ  are 
determined from 1K  and 2K , the singular stress field is also determined by the two 
real parameters. 

Fig. 8 shows the integral path for RWCIM. The linear elastic analyses are performed 
under the plane strain condition by using the software MSC Marc. Fig. 9 shows the 
schematic illustration of the mesh pattern in the present analyses. Here, 8-node elements 
are used in the vicinity of the interface corner edge, 4-node elements are used in other 
regions. 

 
Fig. 8. Integral path C  for RWCIM ( 1 2 3 4 5 6C C C C C C C Cε= + + + + + + ). 
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Fig. 9. Mesh pattern near the interface edge corner. 

The analysis results of the specimen A25 under 0 1 MPaσ = are shown as follows. 
The contour integral path C in Fig. 8 and the mesh pattern in Fig. 9 are used in order to 
calculate the ISSF. Table 6 shows

1,Kσ λ ,
2,Kσ λ , 

1,Kτ λ , 
2,Kτ λ  by varying mine and minl e  

where l is the path dimension in Fig.8 and mine is the minimum mesh dimension in Fig.9. 
As shown in Table 6, the ISSFs with stronger singularity can be obtained as 

1,Kσ λ

=0.1010 and 
1,Kτ λ = -0.04723 when minl e ≥ 10. Similarly, the ISSFs with weaker 

singularity can be obtained as 
2,Kσ λ =-0.5485 and 

2,Kτ λ = -0.01168 when minl e is large 
enough. Fig. 10 shows the interface stress yσ and xyτ  as solid curves obtained by 
substituting those ISSFs into Eq.(7). Here, the circle mark denotes the FEM stress  yσ  
and the triangle marks denotes the FEM stress xyτ . When 0.01r ≤ mm, the FEM 
stresses are in good agreement with the solid curves. The values of FEM stresses varies 
by varying mine , however, the marks are always in good agreement with the solid curves 
when mine  is small enough.   

Table 6. ISSFs
1,Kσ λ , 

2,Kσ λ , 
1,Kτ λ ,  

2,Kτ λ  obtained by varying the minimum mesh size mine . 

minel  
11

min 3e −=  mm 9
min 3e −= mm 

1,Kσ λ  
2,Kσ λ  

1,Kτ λ  
2,Kτ λ  

1,Kσ λ  
2,Kσ λ  

1,Kτ λ  
2,Kτ λ  

5 0.1010 -0.5347 -0.04727 -0.01139 0.1011 -0.5511 -0.04728 -0.01174 

10 0.1010 -0.5440 -0.04724 -0.01158 0.1010 -0.5497 -0.04724 -0.01171 

20 0.1010 -0.5500 -0.04724 -0.01171 0.1010 -0.5484 -0.04724 -0.01168 

40 0.1010 -0.5472 -0.04723 -0.01165 0.1010 -0.5485 -0.04723 -0.01168 

80 0.1010 -0.5485 -0.04723 -0.01168 0.1010 -0.5486 -0.04723 -0.01168 

1,λσK , 
1,Kτ λ : 1-1mMPa λ⋅ ， 2,λσK ,

2,Kτ λ : 2-1mMPa λ⋅  
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Fig. 10. Comparison between stress distribution of Specimen A 25 by Eq. (7) and FEM. 

Since Section 3 shows the stress distribution normalized by the results of A25, the 
specimen geometry of A25 in Table 3 is analyzed by RWCIM and indicated in Table 6. 
Table 7 shows all the results in Table 3 obtained from Eqs. (10), (11) with Table 6 by 
RWCIM. The same FEM mesh pattern is applied to unknown problems and reference 
problems. Table 7 also shows the results obtained by applying RWCIM directly to all 
geometries in Table 3. The results with the stronger stress singularity 1λ  agree well 
with the RWCIM’s results although small difference can be seen for the results for 
weaker stress singularity 2λ . It may be concluded that the proposed method with the 
reference solution provides the ISSF conveniently. In addition, the normalized ISSF can 
be obtained more easily without the reference solution. Then they can predict the 
strength of adhesive joint accurately and conveniently. 

Table 8 shows the ratios of 
2 1, ,K Kσ λ σ λ , 

2 1, ,K Kτ λ τ λ  and 
1 1, ,K Kτ λ σ λ , 

2 2, ,K Kτ λ σ λ . 
Because 

1,Kσ λ  and 
1,Kτ λ  are defined from 1K  as shown in Eq. (14), the 

1 1, ,K Kτ λ σ λ  is 
always constant as 

1 1, , 0.4678K Kτ λ σ λ ≡ −  independent of adl , adt . Similarly, 

2 2, ,K Kτ λ σ λ  is also always constant as 
2 2, , 0.02130K Kτ λ σ λ ≡ . In the experiment, the 

cohesive fracture occurs when adl  < 15mm (specimens A10 and A15) and the adhesive 
fracture occurs when adl  > 15mm as indicated in Appendix C. Except for the models A10 
and A15, the values of 

2 1, ,K Kσ λ σ λ  and 
2 1, ,K Kτ λ τ λ  are in the smaller ranges as 

2 1, ,K Kσ λ σ λ  =-5.574 ~ -4.827 and 
2 1, ,K Kτ λ τ λ  =0.2198 ~ 0.2538. insensitive to adl and 

adt . 

Table 7(a) Comparison of ISSFs
1,Kσ λ , 

1,Kτ λ  obtained by using Eq. (10) and RWCIM.  

Specimen 1

1

1
, [MPa m ]K λ

σ λ
−⋅  1

1

1
, [MPa m ]K λ

τ λ
−⋅  
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1,Kσ λ by using 
Eq.(10) 

1,Kσ λ by using 
RWCIM 

Error(%) 1,Kτ λ by using 
Eq.(11) 

1,Kτ λ by using 
RWCIM 

Error(%) 

A25(Ref) 0.1010 0.1010 0 -0.04723 -0.04723 0 
A10 0.1065 0.1065 -0.0063 -0.0498 -0.04981 -0.0109 
A15 0.1084 0.1083 0.0706 -0.05068 -0.05068 0.0024 
A20 0.1056 0.1056 0.0241 -0.04938 -0.0494 -0.0127 
A30 0.09609 0.09606 0.0303 -0.04493 -0.04723 -0.0130 
A35 0.09111 0.09107 0.0396 -0.0426 -0.04494 -0.0137 
A40 0.08621 0.08618 0.0359 -0.04032 -0.04261 -0.0121 
A50 0.07682 0.07680 0.0295 -0.03593 -0.04032 -0.0131 

A25-30 0.09801 0.09796 0.0471 -0.04583 -0.03593 -0.0043 
A25-45 0.09782 0.09777 0.0500 -0.04574 -0.04583 -0.0011 
A25-90 0.1013 0.1013 0.0288 -0.04738 -0.04574 -0.0006 
A30-30 0.09298 0.09294 0.0444 -0.04348 -0.04738 -0.0031 
A30-45 0.09250 0.09246 0.0456 -0.04325 -0.04348 0.0083 
A30-90 0.09487 0.09482 0.0510 -0.04436 -0.04325 -0.0030 

 

 

Table 7 (b). Comparison of ISSFs 
2,Kσ λ  and 

2,Kτ λ obtained by using Eq. (10) and RWCIM. 

Specimen 

2

2

1
, [MPa m ]K λ

σ λ
−⋅  2

2

1
, [MPa m ]K λ

τ λ
−⋅  

2,Kσ λ by using 
Eq.(10) 

2,Kσ λ by using 
RWCIM 

Error(%) 2,Kτ λ by using 
Eq.(11) 

2,Kτ λ by using 
RWCIM 

Error(%) 

A25(Ref) -0.5485 -0.5485 0 -0.01168 -0.01168 0 

A10 -0.5783 -0.6469 -10.600 -0.01232 -0.01378 -10.619 

A15 -0.5886 -0.6021 -2.2489 -0.01253 -0.01282 -2.2349 

A20 -0.5736 -0.5735 0.0208 -0.01222 -0.01222 -0.0402 

A30 -0.5218 -0.5237 -0.3570 -0.01111 -0.01168 -0.4279 

A35 -0.4948 -0.4985 -0.7484 -0.01054 -0.01116 -0.7907 

A40 -0.4682 -0.4741 -1.2476 -0.01000 -0.01062 -1.2876 

A50 -0.4172 -0.4280 -2.5233 -0.00889 -0.00912 -2.5627 

A25-30 -0.5322 -0.5022 5.9819 -0.01133 -0.01070 5.9186 

A25-45 -0.5312 -0.4884 8.7683 -0.01131 -0.01040 8.7635 

A25-90 -0.5503 -0.4888 12.579 -0.01172 -0.01041 12.555 

A30-30 -0.5050 -0.4785 5.5283 -0.01075 -0.01019 5.5181 

A30-45 -0.5024 -0.4644 8.1720 -0.01070 -0.00989 8.1233 

A30-90 -0.5152 -0.4631 11.251 -0.01097 -0.00987 11.200 

Table 8. ISSF ratios
2 1, ,K Kσ λ σ λ , 

2 1, ,K Kτ λ τ λ , 
1 1, ,K Kτ λ σ λ , 

2 2, ,K Kτ λ σ λ . 
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Specimen 2 1, ,K K Cσ λ σ λ σ=  
2 1, ,K K Cτ λ τ λ τ=  

1 1, ,K Kτ λ σ λ  2 2, ,K Kτ λ σ λ  
A10 − 6.075 0.2766 -0.4678 0.02130 

A15 − 5.557 0.2530 -0.4678 0.02130 

A20 − 5.431 0.2473 -0.4678 0.02130 

A25 − 5.430 0.2473 -0.4678 0.02130 

A30 − 5.452 0.2483 -0.4678 0.02130 

A35 − 5.474 0.2492 -0.4678 0.02130 

A40 − 5.501 0.2505 -0.4678 0.02130 

A50 − 5.574 0.2538 -0.4678 0.02130 

A25-30 − 5.125 0.2334 -0.4678 0.02130 

A25-45 − 4.995 0.2274 -0.4678 0.02130 

A25-90 − 4.827 0.2198 -0.4678 0.02130 

A30-30 − 5.148 0.2344 -0.4678 0.02130 

A30-45 − 5.022 0.2287 -0.4678 0.02130 

A30-90 − 4.885 0.2224 -0.4678 0.02130 
 

 

Therefore, interface stresses yσ  and xyτ  may be expressed by the following 
equation. 

                     ( )1 2 1

1

,
1 1y

K
C r

r
σ λ λ λ

σλσ −
−≅ + , ( )1 2 1

1

,
1 1xy

K
C r

r
τ λ λ λ

τλτ −
−≅ +                          (15) 

Here, Cσ and Cτ are almost constant expressed as 5.3213 0.3379Cσ = − ± , 
0.2423 0.0154Cτ = ±  as shown in Table 8. Fig.11 shows 1

1

1
,( )y K r λ

σ λσ − and
1

1

1
,( )xy K r λ

τ λτ −  for all specimens except for A10 and A15. The dashed line shows the 
results of A50 and the dashed-dotted line shows the results of A25-90. It is found that 
all curves are within the thin gray area between A50 and A25-90. In other words, the 
singular stress fields of all the specimens are similar. Since 1

1

1
,( )y K r λ

σ λσ − = 0.94~1 
and 1

1

1
,( ) 1xy K r λ

τ λτ − ≅ , the effects of 2

2

1
,K r λ

σ λ
− and 2

2

1
,K r λ

τ λ
− in Eqs.(8), (9) are 

very small. Since 
1,Kσ λ  and 

1,Kτ λ  are defined from 1K  as shown in Eq. (14), the ISSF 
can be represented by 

1,Kσ λ as discussed in Section 3. 
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Fig. 11. Normalized stress distributions ( )1

1

1
,y K r λ

σ λσ − , ( )1

1

1
,xy K r λ

τ λτ − . 

Therefore, the ISSF of lap joints as well as butt joints can be obtained conveniently 
by using the analysis method presented in this paper. It is found that although the 
singular stress is controlled by two factors for lap joints, it can be expressed almost 
similarly even if the adhesive geometries are changed widely. Since RWCIM requires 
the complex and difficult calculations such as matrix operation and numerical 
integration, the proposed method in Section 3 is found to be very convenient and 
practical to determine ISSF. 

5. Adhesive strength expressed as a constant value of critical ISSF ( cKσ =const.)   

In this Section, the adhesive strength of single lap joint will be investigated by using 
the experimental results in Appendix C. Fig. 12 shows 

1,Kσ λ  under 0 1σ = MPa by 
varying the adhesive length adl . It is seen that 

1,Kσ λ  decreases when adl ≥ 15mm. Fig. 
13(a) shows the critical average shear stress cτ . When adl  is smaller than about 15mm, 

cτ  becomes constant at about 27.8MPa. However, when adl  is larger than about 
15mm, cτ  tends to decrease. The experimental observation shows that when adl <  
15mm the cohesive fracture occurs and cKσ  increases. Fig.13 (b) shows the critical 
ISSF cKσ =const. when the debonding occurs under o cσ σ=  by varying adl . When adl  
> 15mm, the adhesive fracture occurs and cKσ  becomes constant independent of adl . 
The solid line shows the average value of cKσ  for all specimens expect for specimens 
A10 and A15. The open circle marks are distributed near the solid line within about 
10% error. Nono and Nagahiro [1986] and Rodríguez et al. [2012] discussed the 
adhesive joint strength with varying adhesive geometries. If the adhesive length adl  is 
short enough, the yielding may occur at the entire adhesive region before the ISSF at the 
interface end reaches the critical value, and therefore, cohesive failure occurs instead of 
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interface failure [Nono et al. (1986); Rodríguez et al. (2012)]. The previous studies 
suggested that the linear elastic approach with a critical ISSF=const.  may be useful for 
evaluating other toughened structural adhesives exhibiting a good degree of ductility 
[Noda et al. (2015c); Wang et al. (2016); Miyazaki et al. (2017)]. In other words, if 
interface failure is confirmed instead of cohesive failure (see Fig.13), the presented 
method may predict the failure of a relatively ductile adhesive. 

 
Fig. 12. Relationship between 

1,Kσ λ  and adl under 0 1σ = MPa. 

 

 

 

 
(a)  (b) 

Fig. 13. (a) Average shear stress at fracture of specimens with adt  = 0.15 mm, (b) Relationship between 

1, |
o ccK Kσ σ λ σ σ==  and adl . 

Fig. 14 shows the relationship between 
1,Kσ λ and adhesive thickness adt  under 0 1σ =

MPa. The solid line and dashed line denote the values of 
1,Kσ λ for adl =25mm and 

30mm, respectively. It is found that the 
1,Kσ λ is almost constant independent of adt . Fig. 

15 shows the relationship between cKσ and adt  under o cσ σ= . The results of cKσ  
are plotted in Fig.15 (a) for the specimens without guide block and in Fig.15 (b) for the 
specimens with guide block. It is seen that the strength is improved by using the guide 
block. This is because the size and number of the internal voids decrease by using the 
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guide block. The details are indicated in Appendix C. It is found that the values of cKσ  
are almost constant independent of adt  even if changing the testing method. 

 
Fig.14. Relationship between 

1,Kσ λ and adt  when 0 1σ = MPa. 

 

  
(a) Specimen without the guide block (b) Specimen with the guide block 

Fig. 15. Relationship between 
1, |

o ccK Kσ σ λ σ σ==  and adt . 

Fig. 16 shows the critical cKσ of all specimens expect for specimens A10 and A15. 
The solid line shows the average values ,c aveKσ  = 4.030 11-MPa m λ⋅  for the specimens 
without guide block, and ,c aveKσ  = 5.499 11-MPa m λ⋅  for the specimens with guide 
block. The critical ISSFs cKσ  are distributed within 10% error as shown in Fig. 16(a) 
and within 13% as shown in Fig. 16(b). It can be confirmed that the cKσ  is almost 
constant independent of the adl  and adt . Therefore, the debonding criterion of single 
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lap joints can be described as a constant value of critical ISSF cKσ =const. 

  
(a) Specimen without the guide block (b) Specimen with the guide block 

Fig. 16. Comparison between cKσ values. 

In this Section, the value of cKσ  is investigated based on the experimental result. It 
is found that the adhesive strength can be expressed as a constant value of critical ISSF 

cKσ =const. Since the experiments are often time-consuming, the proposed FEM 
calculation is helpful for predicting the adhesive strength accurately and conveniently.  

6. Conclusions 

(1) In this study, a convenient evaluation method of adhesive strength is presented in 
terms of the ISSF (intensity of singular stress field). In this method, the same mesh 
pattern is applied to the unknown problems and the reference problems by focusing 
on the FEM stress at the interface corner. 

(2) Although the singular stress is controlled by two factors for lap joints, it is found 
that the debonding condition can be expressed almost in the same way even if the 
adhesive geometries are widely changed. Therefore, the ISSF of lap joints as well as 
butt joints can be obtained conveniently by using the analysis method presented in 
this paper. 

(3) Based on the obtained ISSF, the debonding criterion is examined with varying the 
adhesive geometries. The results show that the adhesive strength can be expressed 
as cKσ =const when the debonding fracture occurs. 

(4) The usefulness of the present solution is verified by comparing with the results of 
the conventional method (RWCIM). Since RWCIM requires the complex and 
difficult calculations such as matrix operation and numerical integration, the 
proposed method is found to be very convenient and practical to determine ISSF. 
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Appendix A.   Reference solution useful for butt joint analysis: ISSF (intensity of 
singular stress field) for bonded strip under arbitrary material combinations 

The ISSF (intensity of singular stress field) for butt joints in Fig. 3(c) can be obtained 
conveniently by using the exact reference solution *Fσ  shown in this appendix from 
the ratio as shown in Eq. (4) [Zhang et al. (2015)]. Fig. A.1 and Table A.1 indicate 

*Fσ values for bonded strip, which are equivalent to the butt joint for 1l W ≥ .  

 

 

Fig. A.1. *Fσ  at interface edge point in bonded finite plate 

Table A.1 *Fσ  at interface edge point in bonded plate. [underlined figures indicate 𝜆𝜆 <1, bold figures indicate 
𝜆𝜆 >1, standard style figures indicate 𝜆𝜆 =1] 

α  0.4β = −  0.3β = −  0.2β = −  0.1β = −  0β =  0.1β =  0.2β =  0.3β =  0.4β =  
-1.0 0.540 0.446 0.395 0.357 0.332     
-0.95 0.643 0.491 0.422 0.381 0.349     
-0.9 0.726 0.534 0.456 0.412 0.381     
-0.8 1.000 0.636 0.538 0.487 0.45     
-0.7 1.855 0.800 0.626 0.558 0.486     
-0.6 3.291 1.000 0.724 0.638 0.559 0.505    
-0.5  1.264 0.842 0.722 0.635 0.551    
-0.4  1.467 1.000 0.822 0.718 0.615    
-0.3  1.609 1.118 0.913 0.796 0.697    
-0.2  1.690 1.153 1.000 0.889 0.797 0.404   
-0.1   1.103 1.037 0.955 0.890 0.767   
0   1.000 1.000 1.000 1.000 1.000   

0.1   0.767 0.890 0.955 1.037 1.103   
0.2   0.404 0.797 0.889 1.000 1.153 1.690  
0.3    0.697 0.796 0.913 1.118 1.609  
0.4    0.615 0.718 0.822 1.000 1.467  
0.5    0.551 0.635 0.722 0.842 1.264  
0.6    0.505 0.559 0.638 0.724 1.000 3.291 
0.7     0.486 0.558 0.626 0.800 1.855 
0.8     0.450 0.487 0.538 0.636 1.000 
0.9     0.381 0.412 0.456 0.534 0.726 
0.95     0.349 0.381 0.422 0.491 0.643 
1.0     0.332 0.357 0.395 0.446 0.540 

Since the single lap joint does not have any exact reference solutions, a calculation 
method to obtain reference solutions is indicated in Appendix D for the lap joint. 
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Appendix B.  Singular index for lap joints 

Table B. 1 shows singular index for lap joints λ  within a range of 0 < Re( λ ) < 1, 
where the underlined figure indicate the multiple root, the bold figure indicate the 
complex root, the standard style figure indicate the real root. The eigenequation (5) has 
real root, multiple real root or complex root depending on  (α , β ) except for no root at 
(α , β ) = (-1, -0.5). Two real roots appear in most of the material combinations.  

 

Table B.1. Singular index for lap joints λ  ( 0 Re( ) 1λ< < ). [ underlined figure indicate 
multiple root, bold figure indicate complex root, standard style figure indicate real root] 

α  0.5β = −  0.4β = −  0.3β = −  0.2β = −  0.1β = −  0β =  0.1β =  0.2β =  0.3β =  0.4β =  0.5β =  

-1 Non 0.80731 0.72053 0.66461 0.62466 0.59461      

-0.9  
0.80010 0.71327 0.65797 0.61866 0.58922 

     
0.99732 0.99867 0.99911 0.99933 0.99947 

-0.8  
0.79489 0.70660 0.65160 0.61282 0.58393 

     
0.98860 0.99436 0.99625 0.99719 0.99775 

-0.7  
0.792038 0.70053 0.64549 0.60712 0.57874 

     
0.972568 0.98658 0.99107 0.99330 0.99464 

-0.6  
0.792544 0.69510 0.63964 0.60155 0.57362 0.55253 

    
0.947656 0.97479 0.98319 0.98738 0.98989 0.99156 

-0.5   
0.69036 0.63404 0.59610 0.56860 0.54800 

    
0.95849 0.97222 0.97907 0.98320 0.98597 

-0.4   
0.68648 0.62872 0.59078 0.56365 0.54355 

    
0.93730 0.95776 0.96802 0.97425 0.97844 

-0.3   
0.68371 0.62369 0.58558 0.55876 0.53917 

    
0.91100 0.93952 0.95387 0.96266 0.96862 

-0.2   
0.68254 0.61899 0.58050 0.55394 0.53485 0.52105 

   
0.87940 0.91734 0.93630 0.94806 0.95611 0.96200 

-0.1    
0.61470 0.57554 0.54918 0.53061 0.51748 

   
0.89119 0.91512 0.93010 0.94051 0.94818 

0    
0.61093 0.57071 0.54448 0.52643 0.51404 

   
0.86118 0.89024 0.90853 0.92139 0.93099 

0.1    
0.60789 0.56602 0.53984 0.52234 0.51077 

   
0.82743 0.86174 0.88319 0.89841 0.90991 

0.2    
0.60600 0.56151 0.53524 0.51834 0.50770 0.50185 

  
0.78989 0.82980 0.85410 0.87134 0.88446 0.89489 

0.3     
0.55722 0.53070 0.51446 0.50492 0.50053 

  
0.79463 0.82136 0.84007 0.85426 0.86552 

0.4     
0.55325 0.52620 0.51071 0.50254 0.50000 

  
0.75640 0.78519 0.80464 0.81903 0.83017 
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0.5     
0.54980 0.52174 0.50717 0.50076 0.50074 

  
0.71511 0.74579 0.76513 0.77857 0.78813 

0.6     
0.54739 0.51732 0.50394 0.50000 0.50374 0.51528 

 
0.67032 0.70333 0.72160 0.73258 0.73835 0.73937 

0.7      
0.51294 0.50130 0.50127 0.51177 0.53661 

 
0.65782 0.67387 0.68017 0.67815 0.66463 

Table B.1 (Continued) 

α  0.5β = −  0.4β = −  0.3β = −  0.2β = −  0.1β = −  0β =  0.1β =  0.2β =  0.3β =  0.4β =  0.5β =  

0.8      
0.50859 0.50000 0.50807 0.54432 0.57058 

±0.064553i 
 

0.60911 0.62109 0.61781 0.58807 

0.9      
0.50428 0.50415 0.53282 

±0.033989i 

0.53465 

±0.07208i 

0.53714 

±0.10845i 
 

0.55677 0.55881 

1      0.50000 
0.50000 

±0.031938i 

0.50000 

±0.064532i 

0.50000 

±0.098523i 

0.50000 

±0.13485i 

0.50000 

±0.17485i 

 

Appendix C.  Experimental results of single lap joint 

In Appendix C, the experimental results considered in this paper are presented. The 
testing method to evaluate the adhesive strength of single lap joint is prescribed by 
Japanese Industrial Standards (JIS) [JIS K6850 (1999)]. However, since JIS specimen 
has a small thickness, it is difficult to calculate the critical stress intensity accurately 
because of large deformation appearing (see Fig. C.1) before debonding was not 
indicated in the previous studies. In this study, therefore, the thick specimens used by 
Park [Park et al. (2010)] in Fig.2 are analyzed where the adherends aluminum alloy 
6061-T6 are bonded with adhesive FM73M epoxy. In this experiment, the authors 
prepared for the specimen very carefully to exclude the defect and voids. The aluminum 
surface was polished with 40 mesh sandpaper and corroded using 27% sulfuric acid and 
135g/L ferric sulfate for 12min. After the corrosion step, the surfaces were cleaned 
using water and then dried. The assembled adhesive joints were cured by autoclaving at 
120 oC for 120 min. The typical force-displacement curves of the adhesive joints show 
nearly linear behavior. Five specimens were tested for each case to obtain an average 
failure load. A drop in load was used to detect a failure. In this experiment, during the 
bonding process, it was found that a small void may appear in the thicker adhesive ( adt
=0.3, 0.45, 0.9mm), which resulting in lower failure strength. To remove the voids from 
the thicker adhesive, the appropriate guide blocks were machined and secured onto the 
adhesive joints. Failure load in the specimens without internal voids were 40.5% and 
46.2% larger than for those with internal voids when the adhesive lengths are 25mm and 
30mm, respectively [Park et al. (2010)]. Usually, the internal residual stress is caused 
by the contraction during the curing process, which affects the adhesive strength 
significantly. In this experiment, it was conjectured that the adhesive protrusion may be 
prevented between the adherend by using the guide blocks, which results in relieving 
the contraction due to the curing. Therefore, the guide blocks may contribute relieving 
the internal stress as well as removing the voids by curing the contraction. 
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(a) Before loading (b) Under loading 

Fig. C.1. Schematic illustration of deformation of lap joint. 

Table C.1 and Fig. C.2 show the fracture load 
afP and tensile adhesive strength cσ

( /c afP Wtσ = ). Fig. C3 shows the load-displacement curve of the specimens with tad = 
0.15mm. As for all specimens except for A10, the relation between the load and 
displacement is almost linear with small distribution range. Therefore, it can be 
considered that the fractures were caused by the unstable growth of the crack which was 
initiated from the corner edge. The results bring the validation of the evaluation based on 
the ISSF. When the adhesive length becomes long under constant adhesive thickness 
condition, the adhesive strength tends to increase; when the adhesive layer becomes thick 
under constant adhesive length, the adhesive strength does not change remarkably. The 
experimental observation in Fig.13(a) shows that when adl <  15mm the cohesive fracture 
occurs and when adl  > 15mm, the adhesive fracture occurs. Nono and Nagahiro [1986] and 
Rodríguez et al. [2012] discussed the adhesive joint strength with varying adhesive 
geometries. If the adhesive length adl  is short enough, the yielding may occur at the 
entire adhesive region before the ISSF at the interface end reaches the critical value, and 
therefore, cohesive failure occurs instead of interface failure [Nono et al. (1986); 
Rodríguez et al. (2012)]. They indicated that the fracture average shear stress cτ  of the 
adhesive layer in lap joints is almost constant when the adhesive length is small enough. 
The fracture for single lap joint having smaller adhesive length may be described by the 
average shear stress, but the fracture of single lap joint having longer adhesive length can 
be described by the ISSF.  

Table C.1. Experimental results 

Specimen adl  [mm] adt  [mm] 
a fP  [kN] cσ  [MPa] 

without guide 
block 

with guide 
block 

without guide 
block 

with guide 
block 

A10 10 0.15 6.87 - 19.42 - 
A15 15 0.15 10.57 - 29.88 - 
A20 20 0.15 12.41 - 35.08 - 
A25 25 0.15 14.17 - 40.06 - 
A30 30 0.15 14.56 - 41.16 - 
A35 35 0.15 16.41 - 46.39 - 
A40 40 0.15 18.09 - 51.14 - 
A50 50 0.15 18.22 - 51.51 - 

A25-30 25 0.30 14.32 19.54 40.06 31.26 
A25-45 25 0.45 14.26 20.04 39.47 32.06 
A25-90 25 0.90 14.19 17.54 38.09 28.06 
A30-30 30 0.30 16.91 22.85 47.30 30.47 
A30-45 30 0.45 16.12 23.57 44.62 31.43 
A30-90 30 0.90 15.37 21.50 41.26 28.67 
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(a) adt =0.15mm  (b) adl =25,30mm 

Fig. C.2. Adhesive tensile strength. 

 

 

Fig. C3 Load – displacement curves of specimens with tad = 0.15mm 

 

Appendix D. Reference solutions obtained by using RWCIM 

The ISSF of unknown problem for single lap joint can be obtained conveniently from 
the ratio as shown in Eqs. (10~12). However, since the reference solution of the ISSF is 
not presented in Section 3, the calculation method is presented to obtain the reference 
solution. The reciprocal work contour integral method (RWCIM) is based on the Betti’s 
reciprocal theorem. By employing Williams’ eigenfunction expansion method, the 
stress and the displacement in the vicinity of the interface corner edge are expressed as 
follows [Mintzas and Nowell (2012); Carpenter and Byers (1987)]. 

                                                        ( ) 1

1

,  k
ij k ij k

k

K f rλσ θ λ
∞

−

=

= ∑                                        (D.1) 

                                                          ( )
1

,  k
i k i k

k

u K g rλθ λ
∞

=

= ∑                                         (D.2) 

Here, kK   is the coefficient obtained by RWCIM, ijf  and ig  are the eigenfunction 
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related to the kλ  which depends on the angle θ . From Betti’s reciprocal theorem, the 
following equation can be obtained [Mintzas and Nowell (2012); Carpenter and Byers 
(1987)]. 

                                                      ( )* *   0ij i ij i j
C

u u n dsss − =∮                                         (D.3) 

Here, jn is normal vector of the boundary C , *
ijσ  and *

iu  are the complementary 
stress and displacement that satisfy the same equilibrium and constitutive relations as 

ijσ   and  iu , respectively. The stress *
ijσ  and displacement *

iu  can be expressed as 
follows [Mintzas and Nowell (2012); Carpenter and Byers (1987)]. 

                           ( ) ( )* 1 1* * *

1 1

,  ,  k k
ij k ij k k ij k

k k

K f r K f rλ λσ θ λ θ λ
∞ ∞

− − −

= =

= = −∑ ∑                            (D.4) 

                           ( ) ( )** * *

1 1

,  ,  k k
i k i k k i k

k k

u K g r K g rλ λθ λ θ λ
∞ ∞

−

= =

= = −∑ ∑                                  (D.5) 

The integral path 1 2 3 4 5 6( )C C C C C C CC ε= + + + + + +  is set as shown in Fig. 8. 
Because the lines 1C  and 6C  lie along the stress free surface, the integrals along these 
lines are zero. Therefore, Eq. (D.3) can be written as follows. 

                           ( ) ( )
'

* * * *

/2

     ij i ij i j ij i ij i j
C

u u n d u u n ds
π

π

ss  ε θ ss
−

− = −∫ ∫                               (D.6) 

Here, '
2 3 4 5C C C C C= + + + . The terms of ijσ  and  iu  in the left hand side can be 

expressed as Eqs. (D.1) and (D.2). The complementary stress and displacement 
calculated by FEM, , ij FEMσ  and , i FEMu  are substituted into the terms of ijσ  and  iu  in 
the right hand side. Then, *

ijσ   and *
iu  are given by Eqs. (D.4) and (D.5), respectively. 

When 0ε → , the integral in the left hand side becomes constant. The following 
equation is used as *

kK  [Mintzas and Nowell (2012); Carpenter and Byers (1987)]. 

                    ( ) ( ) ( ) ( )* * * * *

/2

1 / ,  , ,  ,   k ij k i k ij k i k jK f g f g n d
π

π

θ λ θ λ θ λ θ λ θ
−

 = − ∫                  (D.7) 

The ISSF kK  can be obtained from the following equation. 

                                      ( )
'

* *
, ,   k ij FEM ik ijk i FEM j

C

K u u n dsss = −∫                                        (D.8) 

Here, 𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖∗ = 𝐾𝐾𝑘𝑘∗𝑓𝑓𝑖𝑖𝑖𝑖(𝜃𝜃, 𝜆𝜆𝑘𝑘)𝑟𝑟𝜆𝜆𝑘𝑘
∗−1 , 𝑢𝑢𝑖𝑖𝑖𝑖∗ = 𝐾𝐾𝑘𝑘∗𝑔𝑔𝑖𝑖(𝜃𝜃, 𝜆𝜆𝑘𝑘)𝑟𝑟𝜆𝜆𝑘𝑘

∗
. RWCIM is useful for 

determining the ISSF. However, the complex and time-consuming calculations such as 
matrix operation and numerical integration are required, which may bring low 
practicality of RWCIM. Because the proposed method in Section 3 enables us to 
analyze the ISSF as accurately as RWCIM, the proposed method is more convenient 
and practical by only focusing on the FEM results at the corner point without taking 
risks of miscalculations. 
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